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Abstract: An algorithm for the localization and counting of cells in histopathological images is presented. The algorithm
relies on the presegmentation of an image into a number of superpixels followed by two random forests for
classification. The first random forest determines if there are any cells in the superpixels at its input and the
second random forest provides the number of cells in the respective superpixel. The algorithm is evaluated on
a bone marrow histopathological dataset. We argue that a single random forest is not sufficient to detect all the
cells in the image while a cascade of classifiers achieves higher accuracy. The results compare favorably with
the state of the art but with a lower computational cost.

1 INTRODUCTION

Histopathological image analysis plays an important
role in the diagnosis of numerous pathologies rang-
ing from infectious diseases to cancer (Oguz et al.,
2016). However, the traditional method for analyz-
ing histopathological images is a tedious and time-
consuming task given the typically large number of
cells contained in the image as well as the numerous
images to be analyzed, which can lead to considerable
inter-observer variability as well as irreproducible re-
sults (Andrion et al., 1995; Ismail et al., 1989). There-
fore, the demand for computer-aided analysis is high
(Demir and Yener, 2005; Zhang et al., 2014) and has
seen an increased effort in research during the pre-
vious decades. Among the major difficulties in the
application of image analysis methods to cell images
are the non-uniform staining, blurring due to defo-
cussing, and the existence of overlapping cells (Demir
and Yener, 2005).

There are methods designed for estimating the lo-
cation of the cells in the image (Kainz et al., 2015;
Zhang et al., 2014). These algorithms use different
techniques such as a score map with the probability of
location or an arbitrary image segmentation through
correlation clustering. On the other hand, the methods
in (Benali et al., 2003; Sjostrom et al., 1999) quantify
the number of cells; the first method uses a clustering
followed by a binarization of the image and the sec-
ond method uses a three layer neural network fed by
structural information. Kainz et al. overcame one of

the main issues in histopathological images, the dif-
ferentiation of cells from background structures, by
using a probability score map to indicate where a cell
is more likely to be located (Kainz et al., 2015). Even
though this method exhibited good results, the inter-
ference of undesired structures is still present. More-
over, the need for defining a threshold for the distance
between a true cell location and the response from a
trained classifier is also an important issue.

In this paper, the SPICE (SuperPIxel classifica-
tion for Cell dEtection and counting) algorthm is
proposed, which is an algorithm for the localization
and quantification (total number) of cells in histo-
logical images. Our method uses a superpixel pre-
segmentation of the image and a sequence of random
forests for classification. The first random forest is
a binary classifier which determines if the superpixel
at its input contains any cells. A second random for-
est, which is a multiclass classifier, determines how
many cells are present at the superpixels provided by
the same pre-segmentation of the image. Both clas-
sifiers can work independently. However, the experi-
mental evaluation indicated that more accurate results
can be obtained if they are applied sequentially. An
advantage of SPICE is the use of superpixels in the
segmentation, since it provides the extracted features
with a more compact and more representative mod-
eling of the cells (e.g., using the color and the shape
of the superpixels). Also, we demonstrate that for the
learning stage, a low computational cost is capable of
giving a high detection accuracy, which is favorably



Figure 1: Depiction of SPICE, detailing the training and the testing stages for both cell detection and cell counting.

compared with state-of-the-art methods (Kainz et al.,
2015) using the same dataset.

2 CELL DETECTION AND
COUNTING

Histological images are acquired by first obtaining a
tissue sample from the patient, then the sample is de-
hydrated and encased in paraffin in order to preserve
the tissue. Finally, a staining is applied to the sam-
ple in order to highlight the structures of interest. The
most common stain used is Hematoxilin and Eosin
(H&E).

Classification algorithms for cell detection on his-
tological images commonly use a sliding window
over the image in order to extract features from it.
However, this can lead to several issues to be ad-
dressed such as the increase in computational cost,
the need for determinate the size of the window and
the eventual misclassifications at the borders of the
image. The method proposed herein is based on the
segmentation of the image into superpixels. Each su-
perpixel is represented by a feature vector which is
then forwarded to a random forest classifier. The out-
line of the proposed method is summarized in Fig. 1.

In the first step of SPICE, the image is divided into
perceptually meaningful regions. This is achieved
using the SLIC superpixel segmentation algorithm
(Achanta et al., 2010), an algorithm that clusters pix-

els in the combined five-dimensional color (CIELAB)
and location features to efficiently generate compact,
nearly uniform segments. We decided to use the SLIC
algorithm since it is considered one of the fastest,
state-of-the-art algorithms (Achanta et al., 2012) and
it only needs the number of superpixels as parame-
ter. The pre-segmentation of the image into superpix-
els, reduces significantly the computational cost and
time of SPICE, by eliminating the tedious process of
sliding a window through the image to obtain the sec-
tions for feature extraction. The superpixel segments
aggregate regions with similar characteristics which
facilitates the feature extraction task. Also, by orga-
nizing the image into similar regions there is a higher
probability that an entire cell or a cluster of cells is
contained in a single segment. The number of super-
pixel segments is selected according to the size of the
image and the size of the cells. Selecting a large num-
ber of segments in a small image can cause the cells
to be partitioned into multiple segments. On the con-
trary, selecting a small number of segments may lead
to superpixels containing both cell and background
information.

For the training step, a number of features are ex-
tracted for each superpixel to represent the underlined
segment. The features we used were the following:
RGB intensity channels, magnitude of oriented gra-
dients, first and second oriented gradients, LUV in-
tensity channels and histogram of oriented gradients.
For every superpixel, the mean and the standard de-



Algorithm 1: SPICE: Training for cell de-
tection and counting

Input : N Images, Cell center coordinates
Output: Detection and Counting Random

Forests
1 for All Images in Set do
2 Segment the image using the SLIC

superpixel algorithm (Achanta et al.,
2012).

3 Extract a 31-dimensional feature vector
for each superpixel.

4 Train the binary random forest for cell
detection.

5 Train the multiclass random forest for cell
counting.

6 end

viation of the respective features are computed, ex-
cept for the histogram of oriented gradients, where
a 9-dimensional vector of the gradient orientations
weighted by their amplitudes is computed. We de-
cided to use the mean and standard deviation of the
features to have a more robust representation of the
structure and color of the cell compared to the back-
ground or other undesired structures. The concatena-
tion of these features yields a 31-dimensional feature
vector.

We decided to use the RGB channels for the color
information of the cell, since H&E stains the cell nu-
cleus with blue color and the cytoplasm with pink
color, therefore it is straightforward to have the blue
color as a feature for the pixels to indicate a high prob-
ability of cell presence. The gradient information ob-
tained by SPICE is used for the representation of the
shape information of the cell. The LUV channels,
such as the RGB channels, provide information of the
color of cells and the background with the advantage
that these features are device (microscope) indepen-
dent and they may not be modified.

The cell detection algorithm is a binary random
forest classifier that determines if the superpixel at its
input contains any cells or background. At this point,
the number of cells in the segment does not play any
major role, since we are focusing only on the pres-
ence or absence of cells in the image. Therefore, the
next step of the algorithm consists in determining the
number of cells in each superpixel. A multi-class ran-
dom forest classifier is employed using the number
of cells present in the segment as the corresponding
label. We decided to limit the number of classes to
four, in order to avoid the potential problem of unbal-
anced data, since it is relatively rare to have more than

Algorithm 2: SPICE: Testing for cell loca-
tion and counting

Input : An image
Output: Locations of cell centers and

number of cells
1 Segment the image using the SLIC superpixel

algorithm (Achanta et al., 2012).
2 Extract a 31-dimensional feature vector for

each superpixel.
3 Apply the feature vectors to the binary

random forest to indicate the presence of
cells in a superpixel.

4 Apply the feature vectors to the multi-class
random forest to obtain the number of cells
in a superpixel.

three cells clustered in the same superpixel. The over-
all procedure for training and testing is summarized in
Algorithms 1 and 2, respectively.

3 EXPERIMENTAL RESULTS

The algorithm was evaluated on the dataset intro-
duced in (Kainz et al., 2015). The dataset con-
sists of 11 images of 1,200×1,200 pixels of healthy
bone marrow from eight patients and their respective
ground truth image. Based on the size of images of
the dataset and the expected cell sizes, we segmented
the images into 1,000 superpixels.

We performed a set of experiments to test the im-
pact of the number of superpixels in the image. We
performed a number of experiments with both a small
as well as a large number of segments. The number of
segments plays a crucial role for the quantification of
cells, as selecting a small number of segments would
result in increased false positives, while a large num-
ber of segments would reduce considerably the detec-
tion of cells in the image. Based on the bone marrow
cell image dataset (Kainz et al., 2015), we selected the
number of superpixels by cross-validation and set it to
the value of 1,000 as this pre-segmentation provides
a detection rate closer to the ground truth for the val-
idation set (Fig. 2). Nevertheless, this parameter has
to be cross-validated in the case of a different type of
cell images. This is perhaps the caveat of the method
but by performing this cross validation we can ensure
that the number of segments will give to the classifier
the strongest features.

The number of classes in the multi-class random
forest was set to four, which represents the presence
of 0, 1, 2, and 3 or more cells in a superpixel segment.
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Figure 2: Impact of the number of superpixels in the quan-
tification of cells.
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Figure 3: ROC curves of (a) the binary classifier and (b)
multi-class classifier of SPICE with a single and cascaded
random forest. The curve for the single random forest in
(a) was generated by comparing its final classification result
in a ”hit or miss” sense, without taking into account the
number of cells detected.

Using four labels handles the issue of unbalanced data
in the training step of the algorithm as the dataset in
(Kainz et al., 2015) contains too few cell clusters with
more than four cells. Moreover, in the second stage,
we also had a label of zero cells in order to include
background superpixels that could have been missed
by the first classifier. Learning the background label
using this additional random forest improves the ro-
bustness of the algorithm.

Table 1: Area under the ROC curve.

Classifier SPICE-CRF Kainz et al. SPICE-SRF
Cell Detect. 97.34% 90.5% 97.29%
Cell Count. 93.67% N/A 71.43%

In the second set of experiments, we examined the
consistency of the method with respect to the num-
ber of trees in the random forests. In order to com-
pare the classifiers more efficiently the area under the
curve (AUC) is used as a score for their performance
(Fawcett, 2006). A 3-fold cross validation was em-
ployed to determine the number of trees in both clas-
sifiers. The results indicated that varying the number
of trees between 50, 150 and 200 trees yields similar
areas under the ROC curve (AUC), namely 97.21%,
97.27% and 97.27% respectively. From this experi-
ment, we concluded that a relatively low number of
trees is sufficient to obtain a high classification accu-
racy as increasing the number of trees does not have
a significant impact on the outcome of the method.
Therefore, for a faster performance and less compu-
tational power we decided to use 50 trees in the next
experiments.

An important question arising from SPICE is why
one has to apply two random forests sequentially in-
stead of a single one that would do the same classifi-
cation. To clarify this issue, the SPICE algorithm is
compared with its variant which uses a single random
forest that classifies the superpixels directly with re-
spect to the number of cells they contain. The ROC
curves are shown in Fig. 3. Figure 3a shows the ROC
curve for the binary classifier. The blue curve corre-
sponds to the performance of the detection classifier
of SPICE using a cascaded random forest while the
red curve is the same classifier but in a single ran-
dom forest configuration. The curve for the single
classifier is generated by the cells detected at its out-
put in a binary (”hit or miss”) sense. Since there is
only a single stage, these curves are relatively similar.
However, the difference is clear in Fig. 3b where the
multi-class random forest applied after the first binary
random forest outperforms the straightforward classi-
fication of the image. This happens because classifi-
cation errors from the previous stage are carried over
and affect deeply the multi-class classification.

The experiment proved that SPICE is capable of
rivaling the state-of-the-art method for cell detection.
The algorithm is capable of finding the cells in the su-
perpixel segments of the image with a high accuracy
and creates a window around them to indicate the re-
sults. Figure 4 illustrates representative results of cell
detection using the proposed SPICE algorithm.

In the last set of experiments the SPICE algorithm
is compared with the algorithm developed in (Kainz



Figure 4: Representative result of SPICE cell detection on
an image of the database presented in (Kainz et al., 2015).
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Figure 5: Comparison between the SPICE algorithm and
the method presented in (Kainz et al., 2015).

et al., 2015) for the localization of cells in the image.
The respective ROC curves are depicted in Fig. 5 and
the overall accuracies are shown in Table 1. Since the
method presented in (Kainz et al., 2015) is only a cell
localization algorithm, this experiment concerns only
the localization and not the number of cells.

Despite its success and good performance, the
proposed approach has one limitation that is related
on how the number of the superpixels for the segmen-
tation of the images are selected. This is now per-
formed by heuristic cross-validation and typically set
to 1,000. Although this has to be adjusted for ev-
ery new type of image by performing cross-validation
to estimate the number of superpixels, we can ensure
that the different segments will give to the classifier
representative features.

The goal of the proposed method is to detect
isolated cells in an image and obtain their features
for better and stronger classification of bone marrow

histopathological images. An interesting and possi-
ble extension of this work would be in hematological
diseases and more particularly in the analysis of 2D
immunotherapy images (Rosas-Taraco et al., 2011;
Janowczyk and Madabhushi, 2016) or in detecting
cells in Pap smear images (Plissiti et al., 2015), where
superpixels can also be used so that each image can
be tessellated into approximately equally sized subre-
gions, presenting homogeneous intensity characteris-
tics. However, different types of images may exhibit
different properties because cells may be highly over-
lapping or the staining process may be different. This
implies that a different set of features may need to
be extracted for these type of images. Regardless of
the type of the features that may be used for each im-
age, the SPICE algorithm is general and can easily be
adapted to detect and localize cells in such types of
images.

4 CONCLUSION

A method for cell detection and quantification in his-
tological images that uses a superpixel segmentation
along with a two stage random forest classification is
presented. The method was successfully evaluated in
terms of AUC and favorably compared to a state-of-
the-art algorithm for cell detection. The main advan-
tage of the proposed method is that it provides a flex-
ible way for the simultaneous detection and counting
of cells in histopathological images using a cascade
of classifiers. The results indicated that the proposed
SPICE algorithm ameliorates the classification accu-
racy by approximately 7% with respect to the state of
the art (Kainz et al., 2015). As future work, we plan
to extend the algorithm to detect 3D cells, where the
difficulty consists in determining the appropriate fea-
tures.
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